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A method of linearizing a quasilinear heat-conduction equation is proposed. The closeness of the exact and
approximate solutions was estimated by an inequality, the right side of which determines the closeness of the
linearized solution to the initial condition.

We will consider the following quasilinear heat-conduction equation:
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where x = (x1, x2, x3). Let us write the following initial and boundary conditions for (1):

ψ (x, 0) = f (x) ,   x 2 D ,   ψ (x, t)

x2S=∂D

 = g (x, t) . (2)

It will be assumed that the function F(x, ψ, ∂ψ ⁄ ∂x) is continuously differentiated with respect to its arguments. In this
case, problem (1)–(2) can be solved approximately with the use of the linearization
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Let us estimate the accuracy of the exact and approximate solutions of problems (1)–(2) and (3), (4), and (6).
For this purpose, we will denote the difference between them by v(x, t):

v (x, t) = ψ (x, t) − ψ
__

 (x, t) . (7)

Then we will write the following problem for v(x, t):
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v (x, 0) = 0 ,   v (x, t)x2S=∂D = 0 . (9)

Let us multiply both sides of Eq. (8) by v(x, t) and integrate them over the region D. As a result, we obtain
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let us introduce the designations
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It follows from formula (6) that
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We will assume that the function F(x, ψ, ∂ψ ⁄ ∂x) is continuously differentiated and satisfies the Lipschitz condition:
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Let us substitute formulas (11), (12), and (14) into formula (10):
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Moreover,
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since v = 0 in S and ∫∫∫ 
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where α and β are positive constants differing from zero. Therefore,
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The following inequality follows from the above-indicated formulas:
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Formula (21) represents the known Bellman–Gronwall inequality [2]. We will rewrite it in the following form:
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Here, the constants α and β are selected such that the condition A > 0 is fulfilled. In this case, inequality (24) can be
solved by the successive-substitution method, which makes it possible to obtain the following inequality for estimating
the closeness of the exact and approximate solutions of the initial problem:

NvN
2
 ≤ 2h (t) + 2A ∫ 

0

t

h (τ) exp (A (t − τ)) dτ , (26)

where h(τ) is determined from formula (24).
A solution of the initial problem (1)–(2) can be verified by the method of successive approximations.

NOTATION

a2, thermal diffusivity; L, Lipschitz constant of the function F; F, amount of heat generated (lost) in a unit
volume for a unit time (entropy); ψ, thermal response of a medium (change in the temperature).
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